Lattice Vibration Spectra

LXXXVIII. Lattice Dynamics of Suzuki-Type $\text{Li}_{6}M^{\parallel}\text{Cl}_{8}(M^{\parallel} = \text{Fe}, \text{Co}, \text{Ni})^{1}$

Jörg Zwinscher,* Heinz Dieter Lutz,* and Hem Chandra Gupta†

*Universität Siegen, Anorganische Chemie I, D-57068 Siegen, Germany; and †Department of Physics, Indian Institute of Technology, New Delhi, India

Received October 25, 1995; accepted March 19, 1996

Lattice dynamical calculations of Suzuki-type Li₆FeCl₈, Li₆CoCl₈, and Li₆NiCl₈ have been performed using various potential models (rigid-ion, central and angular force-constants). The potential energy is mainly controlled by Coulomb forces and short-range M^{II} -Cl interactions ($K_1 = 0.79 - 0.82$, $\alpha_1 = 0.84 - 0.88$ N cm⁻¹). There are significant differences between the corresponding TO and LO phonon modes (species F_{1u}), which are caused by the strong macroscopic field in these highly ionic compounds. The sequence of the Raman allowed modes taken from the literature has to be reversed as $A_{1g} > E_g > F_{2g}(1) > F_{2g}(2)$. The higher wavenumbers of the A_{1g} and E_g phonons are due to the involvement of the force-constant K_1 in the respective potential energies. FIR reflection spectra of the title compounds including oscillator-fit calculations are presented. \odot 1996 Academic Press, Inc.

INTRODUCTION

On substitution of the alkali metal ions of NaCl-type halides by bivalent ions M^{II} , vacancies in the cation sublattice are produced. These vacancies and also the bivalent metals are ordered if the concentration of M^{II} reaches about 10 mol% (1) and, hence, so-called Suzuki-type deficient NaCl superstructure $M_6^{I}M^{II}X_8(2, 3)$ are formed. On further increase of the M^{II} content to about 30 mol% another deficient NaCl superstructure, viz. that of the orthorhombic $SnMn_2S_4$ type (1, 4), exists. The Suzuki-type superstructures have been reported in the literature for ternary lithium fluorides, chlorides, and bromides, and sodium chlorides. The cubic crystal structure (space group $Fm\overline{3}m$, Z = 4) of Li₆MgBr₈ has been confirmed by X-ray single crystal studies (5), those of Li₆CoCl₈ and Li₆FeCl₈ by X-ray powder diffraction, and neutron powder and Mößbauer spectroscopic studies, respectively (6, 7).

¹ Part LXXXVII, H. C. Gupta, J. Zwinscher, and H. D. Lutz, *J. Phys. Chem. Solids*, in press.

The most straight-forward technique examining the formation of Suzuki-type superstructures are Raman spectroscopic experiments (8–12). Suzuki-type halides display four relatively sharp Raman bands. Owing to the great ionicity producing large TO/LO splittings (see later) the infrared spectra of the title compounds only reveal broad bands with some inflections (11). The assignment of the observed bands to species A_{1g} , E_g , and F_{2g} allowed with the Raman experiments (9, 13) was performed by singlecrystal Raman studies (8). In connection with the interpretation of the Raman spectra of the related SnMn₂S₄-type halides (14), we doubted this assignment in the meantime.

Therefore, we performed lattice dynamical calculations on the title compounds by using both a rigid-ion model (RIM) (15) and a central and angular force-constant model (CF-AF) (16). The calculation procedures are described elsewhere (17, 18). The input parameters are the fractional coordinates u (6, 7), the lattice constants a (6, 7, 11), the masses of the atoms involved, the symmetry coordinates q_n (11, 13), and the phonon energies. The force constants and the effective dynamical charges are treated as variable parameters to give the best fit of the experimental frequencies.

In order to obtain at least crude data of the transversal (TO) and the longitudinal optic (LO) phonons of the IR allowed species F_{1u} we recorded the infrared reflection spectra of Li₆FeCl₈, Li₆CoCl₈, and Li₆NiCl₈ computing the phonon energies by using the four-parameter oscillator-fit model (19, 20). The Raman spectroscopic data are taken from the literature (11).

EXPERIMENTAL

Suzuki-type ternary halides Li_6FeCl_8 , Li_6CoCl_8 , and Li_6NiCl_8 were prepared by fusing the binary compounds in evacuated borosilicate glass ampoules as described elsewhere (11). Pellets with mirror-like surfaces were obtained by pressing polycrystalline samples at 750 MPA using

FIG. 1. IR reflection spectra (R, pressed pellets, Bruker IFS 113v; fitted, dashed line) and dispersion functions of the dielectric constant ε'' (full line) and -Im(1/ $\hat{\epsilon}$) (dashed line) of Li₆FeCl₈, Li₆CoCl₈, and Li₆NiCl₈.

TABLE 1

Oscillator		Li ₆ F	FeCl ₈			Li ₆ 0	CoCl ₈			Li ₆	NiCl ₈	
no.	ω_{TO}	γτο	$\omega_{\rm LO}$	$\gamma_{ m LO}$	ω _{TO}	γτο	ω_{LO}	$\gamma_{ m LO}$	ω _{TO}	γ το	ω_{LO}	$\gamma_{ m LO}$
1	300.8	93.1	378.6	147.4	306.1	86.5	370.0	126.3	314.8	97.8	374.9	138.8
2	245.0	61.1	272.0	75.2	255.0	62.5	282.5	77.0	262.7	63.1	289.4	76.6
3	219.1	41.1	228.2	44.6	222.9	42.8	234.9	47.6	229.7	41.4	239.0	44.8
4	195.5	55.2	195.5	55.2	211.2	33.2	212.8	33.7	198.1	16.3	198.1	16.3
5	120.8	323.3	120.8	323.3	100.2	22.5	100.5	22.5	119.2	12.5	119.6	12.5
6	72.0	39.7	72.7	39.7	78.8	44.0	80.6	44.0	81.8	44.8	83.5	44.8
ϵ_{∞}		3.5	340			3.1	1212			2.9	0140	

Oscillator Parameters (Damping Constant γ (cm⁻¹) and Dielectric Constant ε_{∞}) and TO and LO Phonon Energies (cm⁻¹) of the Zone-Center Modes (Species F_{1u} , Unit-Cell Group O_h) of Suzuki-Type Li₆FeCl₈, Li₆CoCl₈, and Li₆NiCl₈ Obtained from IR Reflection Spectra of Pressed Pellets Using the Four-Parameter Oscillator-Fit Method

highly polished pistons. The spectra were recorded at near normal incidence using a Bruker 113v Fourier transform interferometer (reference: Au mirror, resolution $<2 \text{ cm}^{-1}$). The spectra were converted into the dielectric dispersion functions by the four-parameter oscillator-fit method (factorized form). Details are given in Ref. (20).

RESULTS

The infrared reflection spectra of Li_6FeCl_8 , Li_6CoCl_8 , and Li_6NiCl_8 as well as various dispersion relations are shown in Fig. 1. The oscillator parameters and the wavenumbers of the TO and LO phonon modes are given in Table 1.

The symmetry coordinates of the lattice modes ($|\mathbf{q}| = 0$) of Suzuki-type compounds (11, 13) are given in Table 2. They differ from those of most other compounds in such a manner that the coordinates of one lattice site of both the M^{I} and X ions are splitted into two coordinates.

The short-range force constants (K_i and F_i , RIM; α_i and α'_i , CF-AF) chosen for the lattice dynamical calculations are shown in Fig. 2. The number of the force constants which can be used for the calculation is limited because of the small number of observable modes. The wavenumbers of the IR allowed modes are not precisely known as discussed above.

Phonon energies observed (FRQ) and calculated (FRC), short-range force constants (see above), eigenvectors of the phonon modes, and potential energy distributions (PED) determined are compiled in Tables 3–6. The vibrational modes of the zone-center phonons are shown in Fig. 3.

The main results obtained are the following: (i) the results of the rigid-ion model (RIM) and the central and angular force-constant model (CF-AF) calculations match nicely. (ii) The assignment of the Raman modes reported by Bates *et al.* (8) has to be interchanged, i.e., the wavenumbers of the E_g modes are larger than those of the two F_{2g} bands (see Table 3). (iii) The Raman allowed modes of species A_{1g} and especially E_g are governed by the M^{II} -Cl bonds, and those of F_{2g} by the Li–Cl bonds. (iv) Coulomb forces are involved in the A_{1g} and both F_{2g} modes (see Table 5). (v) Mixing of the internal and external modes of species F_{2g} cannot be neglected. (vi) The six IR allowed modes of species F_{1u} are partly unmixed, i.e., characteristic modes of the M^{II} Cl₆ and the LiCl₆ octahedra (thus, for example, the $F_{1u}(2)$ TO and the $F_{1u}(5)$ TO phonon modes correspond to ν_3 and ν_4 of the M^{II} Cl₆ octahedra), and partly strongly mixed typical lattice modes as, for instance, $F_{1u}(6)$ TO (see Fig. 3). (vii) The short-range force constants due to the M^{II} -Cl bonds are about 0.8 N cm⁻¹ slightly increasing on going from the iron to the nickel compound,

FIG. 2. Sketch of the Suzuki structure $\text{Li}_6 M^{II} \text{Cl}_8$ with the short-range force constants K_i , F_i , and α_i .

						Coordin	lates x, y, z	(13)"								
Species	No.	Atom	x y z	Atom	x y z	Atom	x y z	Atom	х у з	z Atom	х	; y	z	Atom	x	y z
A_{1g}	q_1	$X(2)_{1}$	1 0 0	$X(2)_{2}$	-1 0 0	$X(2)_{3}$	0 1 0	$X(2)_{4}$	0-1 0	$X(2)_5$	C	0	1	$X(2)_{6}$	0	0-1
A_{2u}	q_2	M_1^{I}	$1 \ 0 \ 0$	M_2^{I}	$-1 \ 0 \ 0$	M_3^{I}	$0 \ 1 \ 0$	M_4^{I}	0 - 1 () M_5^{I}	C	0	1	M_6^{I}	0	0 - 1
E_g	q_3	$X(2)_{1}$	$1 \ 0 \ 0$	$X(2)_{2}$	$-1 \ 0 \ 0$	$X(2)_{3}$	0 - 1 0	$X(2)_{4}$	0 1 0)						
E_u	q_4	M_1^{I}	$1 \ 0 \ 0$	M_2^{I}	$-1 \ 0 \ 0$	M_3^{I}	0 - 1 0	M_4^{I}	0 1 0)						
F_{1g}	q_5	$X(2)_{1}$	$0 \ 1 \ 0$	$X(2)_{2}$	0 - 1 0	$X(2)_{3}$	$-1 \ 0 \ 0$	$X(2)_{4}$	1 0 0)						
F_{1u}	q_6	M_1^{I}	$1 \ 0 \ 0$	M_2^{I}	$1 \ 0 \ 0$											
	q_7	M_1^{I}	$0 \ 0 \ 1$	M_2^{I}	$0 \ 0 \ 1$	M_3^{I}	$0 \ 0 \ 1$	M_4^{I}	0 0	l						
	q_8	M_1^{I}	$0 \ 1 \ 0$	M_2^{I}	0 - 1 0	M_3^{I}	$1 \ 0 \ 0$	M_4^{I}	-1 0 0)						
	q_9	M^{II}	$1 \ 0 \ 0$													
	q_{10}	$X(1)_{1}$	1 0 0	$X(1)_{2}$	$1 \ 0 \ 0$											
	\bar{q}_{11}	$X(2)_{1}$	1 0 0	$X(2)_{2}$	$1 \ 0 \ 0$											
	q_{12}	$X(2)_{1}$	$0 \ 0 \ 1$	$X(2)_{2}$	$0 \ 0 \ 1$	$X(2)_{3}$	$0 \ 0 \ 1$	$X(2)_{4}$	0 0	l						
F_{2g}	q_{13}	$X(1)_{1}$	1 0 0	$X(1)_{2}$	-1 0 0											
0	q_{14}	$X(2)_{1}$	0 1 0	$X(2)_{2}$	0 - 1 0	$X(2)_{3}$	$1 \ 0 \ 0$	$X(2)_{4}$	-1 0 0)						
F_{2u}	q_{15}	M_1^{I}	0 1 0	M_2^{I}	0 - 1 0	M_3^{I}	-1 0 0	M_4^{I}	1 0 0)						
	q_{16}	M_1^{I}	$0 \ 0 \ 1$	$M_2^{\overline{I}}$	$0 \ 0 \ 1$	M_3^{I}	0 0 - 1	M_4^{I}	0 0 -	l						
	q_{17}	$X(2)_{1}$	0 0 1	$X(2)_{2}$	$0 \ 0 \ 1$	$X(2)_{3}$	0 0 - 1	$X(2)_4$	0 0 -	l						

TABLE 2Symmetry Coordinates of the Zone-Center Phonon Modes of Suzuki-Type $M_6^{I}M^{II}X_8$ with Cartesian Basis
Coordinates x, y, $z(13)^a$

^a In the case of double and triple degenerated species only one of the two or three coordinates are given.

		Li ₆ FeCl ₈			Li ₆ CoCl ₈			Li ₆ NiCl ₈	
		FR	С		FR	C		FR	C
Species	FRQ	CF-AF	RIM	FRQ	CF-AF	RIM	FRQ	CF-AF	RIM
$\overline{A_{1g}}$	238	232	235	237	232	238	240	244	242
E_{σ}	203	209	202	209	208	203	213	216	207
$\vec{F_{2a}}(1)$	144	147	143	139	148	149	155	159	155
$F_{2g}(2)$	106	107	109	111	108	112	116	112	113
$F_{1\mu}(1)$ TO	301	306	328	306	311	346	315	312	346
$F_{1\mu}(1)$ LO	379		351	370		368	375		368
$F_{1\mu}(2)$ TO	245	227	293	255	229	289	263	230	296
$F_{1\mu}(2)$ LO	272		298	283		295	289		301
$F_{1\mu}(3)$ TO	219	225	210	223	227	210	230	227	212
$F_{1\mu}(3)$ LO	228		235	235		235	239		238
$F_{1\mu}(4)$ TO	196	206	186	211	207	186	198	207	189
$F_{1\mu}(4)$ LO	196		210	213		210	198		212
$F_{1u}(5)$ TO	121	105	113	100	106	114	119	117	119
$F_{1\mu}(5)$ LO	121		123	101		124	120		130
$F_{1\mu}(6)$ TO	72	69	76	79	70	77	82	76	82
$F_{1u}(6)$ LO	73		79	81		79	84		83
$\Delta \omega$			12.3			15.9			12.9

 TABLE 3

 Observed (FRQ) and Calculated (FRC) Phonon Energies (cm⁻¹) of Suzuki-Type Halides

Note. RIM and CF-AF, rigid-ion and central and angular force-constant models, respectively; figure of merit $\Delta \omega = \sqrt{1/N \sum_{i=1}^{N} (FRQ(i) - FRC(i))^2}$.

FIG. 3. Vibrational modes of the zone-center phonons of Li_6CoCl_8 obtained by rigid-ion model calculation; for the symmetry restricted vibrational modes of the phonons of species A_{1g} and E_g see (11).

TABLE 4Interatomic Distances (pm) and Force Constants (Central and Angular, Rigid-Ion Force Constant Models) (N cm⁻¹) of
Suzuki-Type Halides $Li_6M^{II}Cl_8$

	F	1	Li ₆ FeCl ₈		Ι	Li ₆ CoCl ₈]	Li ₆ NiCl ₈	
coordinate	constant	Distance ^a	CF-AF	RIM	Distance ^b	CF-AF	RIM	Distance ^c	CF-AF	RIM
M-Cl(2)	α_1, K_1	248.1	0.838	0.79	249.8	0.832	0.79	255.9	0.883	0.82
Li-Cl(1)	α_2, K_2	257.3	0.083	0.20	256.9	0.084	0.22	255.9	0.084	0.22
Li-Cl(2)	α_2, K_3	257.5	0.083	0.07	257.0	0.084	0.07	255.9	0.084	0.07
Li–Cl	α'_2		0.002	_		0.002	_		0.002	
Cl(1)-Cl(2)	α_3, F_1	364.0	0.035	0.00	363.4	0.036	0.00	361.9	0.045	0.01
Cl(2)-Cl(2)	α_3, F_2	350.8 377.0	0.035	0.03	353.3 373.3	0.036	0.03	361.9	0.045	0.04

a = 1031.11(1) pm, u = 0.2410(2) (7).

 $^{b}a = 1025.84(3) \text{ pm}, u = 0.243(1) (6).$

 $^{c}a = 1023.5(1) \text{ pm}, u = 0.250 (11).$

Potential Allowe	Energy Distr d Zone-Cente	ributions (RIM r Phonons of	I, PED%) of t Suzuki-Type I	he Raman $Li_6 M^{II} Cl_8$	Poten Allowe	tial Energy ed Zone-Ce
Species	Force constant	Li ₆ FeCl ₈	Li ₆ CoCl ₈	Li ₆ NiCl ₈	Species	Force
A_{1g}	K_1	68	67	67		constant
0	K_2	0	0	0	$F_{1u}(1)$	K_1
	$\overline{K_3}$	0	0	0		K_2
	F_1	0	0	0		$\overline{K_3}$
	F_2	21	23	23		F_1
	LRFC	10	10	10		F_2 LRFC
E_{g}	K_1	92	92	91		
8	K_2	0	0	0	$F_{1u}(2)$	K_1
	K_3	0	0	0		K_2
	F_1	0	0	0		K_3
	F_2	7	8	8		F_1
	LRFC	0	0	1		F_2 LRFC
$F_{2g}(1)$	K_1	0	0	0		
	K_2	81	86	75	$F_{1u}(3)$	K_1
	K_3	4	3	4		K_2
	F_1	0	0	8		K_3
	F_2	4	3	4		F_1
	LRFC	10	8	9		F_2 LRFC
$F_{2g}(2)$	K_1	0	0	0		
0. /	K_2	22	18	23	$F_{1u}(4)$	K_1
	$\overline{K_3}$	45	44	42	、 /	K_2
	F_1	0	0	1		$\overline{K_3}$
	F_2	43	46	45		F_1
	LRFC	-10	-8	-11		F_2

TADIE 5

range force constants and further explanations see Table 4.

those due to the Li-Cl bonds and the repulsive Clinteractions being <0.25 and <0.05 N cm⁻¹, respectivel (viii) The dynamical effective charges are $z_{\rm Li} = 0.47$ $z_M^{\text{II}} = 0.45 \text{ e}, z_{\text{Cl}(1)} = -0.44 \text{ e}, \text{ and } z_{\text{Cl}(2)} = -0.40 \text{ e}$ for a chlorides under study.

DISCUSSION AND CONCLUSION

The lattice vibrations of Suzuki-type halides resemble those of other highly ionic compounds. This is shown by the large contributions of Coulomb forces to the potential energy and the large TO/LO splittings of the respective phonons. Of the short-range force constants only those due to the partly covalent M^{II} -Cl bonds is of some importance. The large long-range Coulomb forces also cause the respective TO and LO phonons to differ with respect to eigenvectors (see Fig. 3) more strongly than in the case of less ionic compounds. Thus, the LO mode that belongs to $F_{1u}(4)$ TO is $F_{1u}(3)$ LO, not $F_{1u}(4)$ LO. The higher wavenumber of the E_g mode compared to the F_{2g} modes

Note. LRFC, long-range Coulomb forces; for definition of the shortrange force constants and further explanations see Table 4.

is caused by participation of the relatively large force constant K_1 (M^{II} -Cl interaction) in the former mode as it has also been analytically established.

ACKNOWLEDGMENTS

This work was supported by the Fonds der Chemischen Industrie. One of the authors (H. C. Gupta) is indebted to the Deutsche Forschungsgmeinschaft for support as visiting professor.

TABLE 6 Distributions (RIM, PED%) of the IR enter Phonons of Suzuki-Type Li₆M^{II}Cl₈

IO

Li₆CoCl₈

IO

TO

Li₆FeCl₈

TO

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$F_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ F_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ LRFC & -6 & 9 & -6 & 7 & -6 & 7 \\ F_{1u}(2) = \begin{bmatrix} K_{1} & 99 & 88 & 98 & 87 & 98 & 87 \\ K_{2} & 0 & 6 & 0 & 4 & 0 & 4 \\ K_{3} & 0 & 1 & 0 & 2 & 0 & 2 \\ F_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ F_{2} & 4 & 3 & 4 & 4 & 4 & 4 \\ LRFC & -3 & 2 & -3 & 4 & -2 & 4 \\ F_{1u}(3) = \begin{bmatrix} K_{1} & 0 & 9 & 0 & 10 & 0 & 9 \\ K_{2} & 0 & 3 & 0 & 2 & 0 & 3 \\ K_{3} & 72 & 56 & 72 & 56 & 72 & 56 \\ F_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ E_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{3} & 72 & 56 & 72 & 56 & 72 & 56 \\ F_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ LRFC & 28 & 32 & 28 & 31 & 28 & 31 \\ F_{1u}(4) = \begin{bmatrix} K_{1} & 0 & 0 & 1 & 0 & 1 & 0 \\ K_{2} & 7 & 0 & 6 & 0 & 6 & 0 \\ K_{3} & 75 & 72 & 74 & 72 & 72 & 72 \\ F_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ LRFC & 18 & 28 & 20 & 28 & 21 & 28 \\ F_{1u}(5) = \begin{bmatrix} K_{1} & 2 & 1 & 2 & 1 & 2 & 1 \\ K_{2} & 2 & 10 & 1 & 9 & 1 & 9 \\ K_{3} & 83 & 28 & 83 & 27 & 87 & 26 \\ F_{1} & 0 & 0 & 0 & 0 & 7 & 8 \\ F_{2} & 39 & 31 & 41 & 33 & 34 & 27 \\ LRFC & -25 & 30 & -27 & 31 & -32 & 29 \\ \end{bmatrix}$
$F_{2} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $
LRFC -6 9 -6 7 -6 7 $F_{1u}(2)$ K_1 99 88 98 87 98 87 K_2 0 6 0 4 0 4 K_3 0 1 0 2 0 2 F_1 0 0 0 0 0 0 F_2 4 3 4 4 4 $LRFC$ -3 2 -3 4 -2 4 $F_{1u}(3)$ K_1 0 9 0 10 0 9 K_2 0 3 0 2 0 3 K_3 72 56 72 56 72 56 F_1 0 0 0 0 0 0 K_2 7 0 6 0 0 0 K_3 75 72 74 72 72 72 F_1 0 0 0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$F_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ F_{2} & 4 & 3 & 4 & 4 & 4 \\ LRFC & -3 & 2 & -3 & 4 & -2 & 4 \\ F_{1u}(3) = \begin{pmatrix} K_{1} & 0 & 9 & 0 & 10 & 0 & 9 \\ K_{2} & 0 & 3 & 0 & 2 & 0 & 3 \\ K_{3} & 72 & 56 & 72 & 56 & 72 & 56 \\ F_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ F_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ LRFC & 28 & 32 & 28 & 31 & 28 & 31 \\ F_{1u}(4) = \begin{pmatrix} K_{1} & 0 & 0 & 1 & 0 & 1 & 0 \\ K_{2} & 7 & 0 & 6 & 0 & 6 & 0 \\ K_{3} & 75 & 72 & 74 & 72 & 72 & 72 \\ F_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ LRFC & 18 & 28 & 20 & 28 & 21 & 28 \\ F_{1u}(5) = \begin{pmatrix} K_{1} & 2 & 1 & 2 & 1 \\ K_{2} & 2 & 10 & 1 & 9 & 1 & 9 \\ K_{3} & 83 & 28 & 83 & 27 & 87 & 26 \\ F_{1} & 0 & 0 & 0 & 0 & 0 & 7 & 8 \\ F_{2} & 39 & 31 & 41 & 33 & 34 & 27 \\ LRFC & -25 & 30 & -27 & 31 & -32 & 29 \\ \end{pmatrix}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$F_{1u}(3) K_1 \qquad 0 \qquad 9 \qquad 0 \qquad 10 \qquad 0 \qquad $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$F_{1u}(4) = \begin{array}{ccccccccccccccccccccccccccccccccccc$
$F_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ F_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ LRFC = \begin{bmatrix} 28 & 32 & 28 & 31 & 28 & 31 \\ 28 & 31 & 28 & 31 & 28 & 31 \\ \hline \\ F_{1u}(4) = \begin{bmatrix} K_{1} & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ K_{2} & 7 & 0 & 6 & 0 & 6 & 0 \\ K_{3} & 75 & 72 & 74 & 72 & 72 & 72 \\ F_{1} & 0 & 0 & 0 & 0 & 1 & 0 \\ K_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ LRFC = \begin{bmatrix} 18 & 28 & 20 & 28 & 21 & 28 \\ 28 & 20 & 28 & 21 & 28 \\ \hline \\ F_{1u}(5) = \begin{bmatrix} K_{1} & 2 & 1 & 2 & 1 & 2 & 1 \\ K_{2} & 2 & 10 & 1 & 9 & 1 & 9 \\ K_{3} & 83 & 28 & 83 & 27 & 87 & 26 \\ F_{1} & 0 & 0 & 0 & 0 & 7 & 8 \\ F_{2} & 39 & 31 & 41 & 33 & 34 & 27 \\ LRFC = \begin{bmatrix} -25 & 30 & -27 & 31 & -32 & 29 \end{bmatrix}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$F_{1u}(4) \begin{array}{ccccccccccccccccccccccccccccccccccc$
$F_{1u}(5) = \begin{array}{ccccccccccccccccccccccccccccccccccc$
$F_{1u}(5) = \begin{array}{ccccccccccccccccccccccccccccccccccc$
$F_{1u}(5) = \begin{array}{ccccccccccccccccccccccccccccccccccc$
$F_{1u}(5) \begin{array}{cccccccccccccccccccccccccccccccccccc$
$F_{1u}(5) = \begin{array}{ccccccccccccccccccccccccccccccccccc$
$F_{1u}(5) \begin{array}{ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
F_1 000078 F_2 393141333427LRFC-2530-2731-3229
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LRFC -25 30 -27 31 -32 29
$F_{1u}(6)$ K_1 1 2 1 2 1 2
K_2 5 8 4 7 3 4
K_3 22 2 24 2 10 1
F_1 0 0 0 0 10 8
F_2 13 19 12 20 20 26
LRFC 60 69 58 69 56 59

Li₆NiCl₈

TO

ΙO

REFERENCES

- 1. M. Schneider, P. Kuske, and H. D. Lutz, *Thermochim Acta* **215**, 219 (1993).
- 2. J. S. Kasper and J. S. Penner, Acta Crystallogr. 7, 246 (1954).
- 3. K. Suzuki, J. Phys. Soc. Jpn. 16, 67 (1961).
- 4. M. Wintenberger and J. C. Jumas, Acta Crystallogr. Sect. B 36, 1993 (1980).
- 5. M. Schneider, P. Kuske, and H. D. Lutz, Z. Naturforsch. Sect. B 48, 1 (1993).
- R. Kanno, Y. Takeda, A. Takahashi, O. Yamamoto, R. Suyama, and M. Koizumi, J. Solid State Chem. 71, 189 (1987).
- E. Riedel, D. Prick, A. Pfitzner, and H. D. Lutz, Z. Anorg. Allg. Chem. 619, 901 (1993).
- J. B. Bates, R. F. Wood, G. E. Shankle, and M. Mostoller, *Phys. Rev. Sect. B* 15, 3267 (1977).
- 9. J. M. Calleja, A. Ruiz, F. Flores, V. R. Velasco, and E. Lilley, J. Phys. Chem. Solids 41, 1367 (1980).
- A. De Andres, J. M. Calleja, I. Pollini, and G. Benedek, J. Chem. Phys. 83, 4967 (1985).

- H. D. Lutz, P. Kuske, and K. Wussow, Z. Anorg. Allg. Chem. 553, 172 (1987).
- K. Wussow, H. Haeuseler, P. Kuske, W. Schmidt, and H. D. Lutz, J. Solid State Chem. 78, 117 (1989).
- 13. K. Wussow, Doctoral Thesis, University of Siegen (1987).
- H. D. Lutz. M. Schneider, P. Kuske, and H.-J. Steiner, Z. Anorg. Allg. Chem. 592, 106 (1991).
- A. Yamamoto, T. Utida, H. Murata, and Y. Shiro, J. Phys. Chem. Solids 37, 693 (1976).
- 16. J. De Launey, Solid State Phys. 2, 219 (1956).
- H. D. Lutz, J. Himmrich, and H. Haeuseler, Z. Naturforsch. Sect. A 45, 893 (1990).
- H. C. Gupta, A. Parashar, V. B. Gupta, and B. B. Tripathi, *Phys. Status Solidi Sect. B* **160**, K19 (1990); *Physica (Amsterdam) Sect. B* **167**, 175 (1990).
- 19. A. S. Chaves and S. P. S. Porto, Solid State Commun. 13, 865 (1973).
- J. Himmrich, G. Schneider, J. Zwinscher and H. D. Lutz, Z. Naturforsch. Sect. A 46, 1095 (1991).